

Basic topology 1

Find the interior, closure, and boundary of the following set: $A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$

Solution

The interior of A is the set of all points $(x_0, y_0) \in A$ such that for some radius $r \in \mathbb{R}$, the open ball with center (x_0, y_0) and radius r is included in A . That is, $B((x_0, y_0), r) \subseteq A$.

In this exercise, the set A is the open ball centered at $(0, 0)$ with radius 1. To define its interior, we take any point $(x_0, y_0) \in A$ and we have to think if we can assign a value to r so that we can form a small ball around that point and such that this ball is completely contained in the set A .

For each point (x_0, y_0) of A we can create a small open ball such that it is completely contained within A . Stated more rigorously, the radius r of the ball must be smaller than the difference between the radius 1 and the distance from the point $(0, 0)$ to the point (x_0, y_0) .

That is to say, $r < 1 - \|(x_0, y_0)\|$.¹

Therefore, we can conclude that all points of A are in its interior, that is to say, $A^\circ = A$.

The boundary of A is the set of points $(x_0, y_0) \in \mathbb{R}^2$ such that for every real number r , the open ball with center (x_0, y_0) and radius r intersects with A and also with the complement of A (that is, all the elements that are not in A).

The points that lie on the circumference of the center $(0, 0)$ and radius 1, that is to say, the border of $B((0, 0), r)$, is the boundary of A .

The closure of A is the set of all points $(x_0, y_0) \in \mathbb{R}^2$ such that for every real number $r \in \mathbb{R}$, the open ball with center (x_0, y_0) and radius r shares at least one point with A , that is to say $B((x_0, y_0), r) \cap A \neq \emptyset$.

To define the closure of A let us take any point $(x_0, y_0) \in \mathbb{R}^2$ and consider if for any value of r the ball $B((x_0, y_0), r)$ intersects with A . If we choose any point from \mathbb{R}^2 (we have three options, that it is inside of A , on the border of A , or outside), only the points that are inside or on the border of A are such that for any radius r , $B((x_0, y_0), r) \cap A \neq \emptyset$.

The points that are in A and on its boundary are in the closure, since for every $(x_0, y_0) \in B((0, 0), 1)$ and for every $r \in \mathbb{R}$, $B((x_0, y_0), r) \cap A \neq \emptyset$. Therefore, we can say that $\bar{A} = B((x_0, y_0), r)$.

¹Remember that the norm of a vector, is its distance from the origin